The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago.
Amino Acid Sequence
Caffeine
/ analysis
Chromosomes, Plant
Coffea
/ chemistry
Comoros
Comparative Genomic Hybridization
Evolution, Molecular
Methyltransferases
/ classification
Phylogeny
Plant Leaves
/ chemistry
Plant Proteins
/ classification
Sequence Alignment
Sequence Analysis, RNA
Theobromine
/ analysis
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 04 2021
14 04 2021
Historique:
received:
09
11
2020
accepted:
23
03
2021
entrez:
15
4
2021
pubmed:
16
4
2021
medline:
10
11
2021
Statut:
epublish
Résumé
Caffeine is the most consumed alkaloid stimulant in the world. It is synthesized through the activity of three known N-methyltransferase proteins. Here we are reporting on the 422-Mb chromosome-level assembly of the Coffea humblotiana genome, a wild and endangered, naturally caffeine-free, species from the Comoro archipelago. We predicted 32,874 genes and anchored 88.7% of the sequence onto the 11 chromosomes. Comparative analyses with the African Robusta coffee genome (C. canephora) revealed an extensive genome conservation, despite an estimated 11 million years of divergence and a broad diversity of genome sizes within the Coffea genus. In this genome, the absence of caffeine is likely due to the absence of the caffeine synthase gene which converts theobromine into caffeine through an illegitimate recombination mechanism. These findings pave the way for further characterization of caffeine-free species in the Coffea genus and will guide research towards naturally-decaffeinated coffee drinks for consumers.
Identifiants
pubmed: 33854089
doi: 10.1038/s41598-021-87419-0
pii: 10.1038/s41598-021-87419-0
pmc: PMC8046976
doi:
Substances chimiques
Plant Proteins
0
Caffeine
3G6A5W338E
Methyltransferases
EC 2.1.1.-
caffeine synthase
EC 2.1.1.-
Theobromine
OBD445WZ5P
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8119Références
Charrier, A. Rapport de Mission aux Comores. 1–8 (1971).
International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species (2020).
Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).
pubmed: 30746478
pmcid: 6357749
doi: 10.1126/sciadv.aav3473
Chadburn, H. & Davis, A. P. Coffea humblotiana, Caféier de Humblot. The IUCN Red List of Threatened Species 2017 e.T108652718A108665565 (2017).
Guyot, R. et al. WCSdb: A database of Wild Coffea Species. Database (2020).
WCSP. World Checklist of Selected Plant Families (Royal Botanic Gardens, 2018).
Hamon, P. et al. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content. Mol. Phylogenet. Evol. 109, 20 (2017).
doi: 10.1016/j.ympev.2017.02.009
Yu, Q. et al. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea): Recent speciation event of Coffea arabica. Plant J. 67, 305–317 (2011).
pubmed: 21457367
doi: 10.1111/j.1365-313X.2011.04590.x
Bertrand,. Sur la Composition Biochimique du Café de la Grande Comore 162–164 (G. Masson, 1901).
Campa, C., Doulbeau, S., Dussert, S., Hamon, S. & Noirot, M. Diversity in bean Caffeine content among wild Coffea species: Evidence of a discontinuous distribution. Food Chem. 91, 633–637 (2005).
doi: 10.1016/j.foodchem.2004.06.032
Ashihara, H. Metabolism of alkaloids in coffee plants. Braz. J. Plant Physiol. 18, 1–8 (2006).
doi: 10.1590/S1677-04202006000100001
Ky, C. L. et al. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P accessions. Food Chem. 75, 223–230 (2001).
doi: 10.1016/S0308-8146(01)00204-7
Perrois, C. et al. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta 241, 179–191 (2014).
pubmed: 25249475
pmcid: 4282694
doi: 10.1007/s00425-014-2170-7
Ashihara, H., Sano, H. & Crozier, A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69, 841–856 (2008).
pubmed: 18068204
doi: 10.1016/j.phytochem.2007.10.029
Denoeud, F. et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 1181–1184 (2014).
pubmed: 25190796
doi: 10.1126/science.1255274
Lang, T. et al. Numerous compounds orchestrate coffee’s bitterness. J. Agric. Food Chem. 68, 6692–6700 (2020).
pubmed: 32437139
doi: 10.1021/acs.jafc.0c01373
Tran, H. T., Lee, L. S., Furtado, A., Smyth, H. & Henry, R. J. Advances in genomics for the improvement of quality in coffee. J. Sci. Food Agric. 96, 3300–3312 (2016).
pubmed: 26919810
doi: 10.1002/jsfa.7692
Leloup, V., Louvrier, A. & Liardon, R. Degradation Mechanisms of Chlorogenic Acids During Roasting. 192–198 (1995).
Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N. & Sano, H. Producing decaffeinated coffee plants. Nature 423, 823–823 (2003).
pubmed: 12815419
doi: 10.1038/423823a
Charrier, A. La structure genetique des cafeiers spontanes de la region Malgache et leurs relations avec les cafeiers d’arigine Africaine (Eucoffea). (1978).
Mazzafera, P. & Carvalho, A. Breeding for low seed caffeine content of coffee (Coffea L.) by interspecific hybridization. Euphytica 59, 55–60 (1991).
doi: 10.1007/BF00025361
Silvarolla, M. B., Mazzafera, P. & Fazuoli, L. C. A naturally decaffeinated arabica coffee. Nature 429, 826 (2004).
pubmed: 15215853
doi: 10.1038/429826a
Maluf, M. P. et al. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica. Genet. Mol. Biol. 32, 802–810 (2009).
pubmed: 21637458
pmcid: 3036905
doi: 10.1590/S1415-47572009005000090
Mazzafera, P., Baumann, T. W., Shimizu, M. M. & Silvarolla, M. B. Decaf and the steeplechase towards decaffito—the coffee from caffeine-free Arabica plants. Trop. Plant Biol. 2, 63–76 (2009).
doi: 10.1007/s12042-009-9032-7
Razafinarivo, N. J. et al. Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites. Ann. Bot. 111, 20 (2013).
doi: 10.1093/aob/mcs283
Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. https://doi.org/10.1093/nar/gky730 (2018).
doi: 10.1093/nar/gky730
pubmed: 30107434
pmcid: 6323972
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
pubmed: 31375807
pmcid: 7605509
doi: 10.1038/s41587-019-0201-4
Ma, J. & Bennetzen, J. L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl. Acad. Sci. 101, 12404–12410 (2004).
pubmed: 15240870
doi: 10.1073/pnas.0403715101
pmcid: 515075
Proost, S. et al. i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, e11–e11 (2012).
pubmed: 22102584
doi: 10.1093/nar/gkr955
Cabanettes, F. & Klopp, C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).
pubmed: 29888139
pmcid: 5991294
doi: 10.7717/peerj.4958
Ribas, A. F., Cenci, A., Combes, M. C., Etienne, H. & Lashermes, P. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. BMC Genom. 12, 20 (2011).
doi: 10.1186/1471-2164-12-240
Xu, Z. et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol. 18, 1–14 (2020).
doi: 10.1186/s12915-020-00795-3
Ly, S. N. et al. Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae. PLoS One 15, e0232295 (2020).
pubmed: 32353023
pmcid: 7192488
doi: 10.1371/journal.pone.0232295
Wicker, T., Yahiaoui, N. & Keller, B. Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J. 51, 631–641 (2007).
pubmed: 17573804
doi: 10.1111/j.1365-313X.2007.03164.x
Davis, A. P. et al. A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Ann. Missouri Bot. Garden 20, 68–78 (2009).
doi: 10.3417/2006205
Wendel, J. F., Jackson, S. A., Meyers, B. C. & Wing, R. A. Evolution of plant genome architecture. Genome Biol. 17, 37 (2016).
pubmed: 26926526
pmcid: 4772531
doi: 10.1186/s13059-016-0908-1
Guyot, R. et al. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. BMC Genom. 13, 103 (2012).
doi: 10.1186/1471-2164-13-103
Razafinarivo, N. J. et al. Geographical gradients in the genome size variation of wild coffee trees (Coffea) native to Africa and Indian Ocean islands. Tree Genet. Genomes 8, 1345–1358 (2012).
doi: 10.1007/s11295-012-0520-9
Guyot, R. et al. Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Mol. Genet. Genom. 291, 1979–1990 (2016).
doi: 10.1007/s00438-016-1235-7
Jin, J.-Q. et al. Hongyacha, a naturally caffeine-free tea plant from Fujian, China. J. Agric. Food Chem. 66, 11311–11319 (2018).
pubmed: 30303011
doi: 10.1021/acs.jafc.8b03433
Mizuno, K. et al. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS Lett. 534, 75–81 (2003).
pubmed: 12527364
doi: 10.1016/S0014-5793(02)03781-X
Deng, C. et al. Metabolite and transcriptome profiling on xanthine alkaloids-fed tea plant (Camellia sinensis) shoot tips and roots reveal the Complex metabolic network for caffeine biosynthesis and degradation. Front. Plant Sci. 11, 551288 (2020).
pubmed: 33013969
pmcid: 7509060
doi: 10.3389/fpls.2020.551288
Deng, W. W., Rakotomalala, J.-J., Nagai, C. & Ashihara, H. Caffeine biosynthesis and purine metabolism in leaves of mascarocoffea species. Eur. Chem. Bull. 6, 223 (2017).
doi: 10.17628/ecb.2017.6.223-228
Ashihara, H. et al. Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of N-methyltransferase genes. Phytochemistry 67, 882–886 (2006).
pubmed: 16624354
doi: 10.1016/j.phytochem.2006.02.016
Davis, A. P., Tosh, J., Ruch, N. & Fay, M. F. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea: Psilanthus subsumed in Coffea. Bot. J. Linn. Soc. 167, 357–377 (2011).
doi: 10.1111/j.1095-8339.2011.01177.x
Hamon, P. et al. Caffeine-free species in the genus coffea. Coffee Health Dis. Prev. 20, 39–44. https://doi.org/10.1016/B978-0-12-409517-5.00005-X (2015).
doi: 10.1016/B978-0-12-409517-5.00005-X
Clifford, M. N., Gibson, C. L., Rakotomalala, J.-J.R., Cros, E. & Charrier, A. Caffeine from green beans of Mascarocoffea. Phytochemistry 30, 4039–4040 (1991).
doi: 10.1016/0031-9422(91)83461-S
Michelmore, R. W. & Meyers, B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).
pubmed: 9847076
doi: 10.1101/gr.8.11.1113
Chevalier, A. Un nouveau Caféier sauvage de Madagascar à grains sans caféine. Rev. Bot. Appl. Agric. Colon. 17, 821–826 (1937).
Dornano, M., Chassevent, F. & Pougneaud, S. Composition et caractéristiques chimiques de Coffea sauvages de Madagascar. II. Recherche de la caféine et d’autres méthylxanthines dans les feuilles et les graines de caféiers sauvages et cultivés. III. Cafamarine et trigonelline contenues dans les graines de trois caféiers sauvages. Café Cacao 11, 235–249 (1967).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
pubmed: 21217122
pmcid: 3051319
doi: 10.1093/bioinformatics/btr011
Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).
pubmed: 27749838
pmcid: 5503144
doi: 10.1038/nmeth.4035
English, A. C. et al. Mind the Gap: Upgrading genomes with Pacific biosciences RS long-read sequencing technology. PLoS One 7, e47768 (2012).
pubmed: 23185243
pmcid: 3504050
doi: 10.1371/journal.pone.0047768
Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 20 (2009).
doi: 10.1002/0471250953.bi0410s25
Nachtweide, S. & Stanke, M. Multi-genome annotation with AUGUSTUS. In Gene Prediction, vol 1962 (ed. Kollmar, M.) 139–160 (Springer, 2019).
Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene structure prediction in higher organisms. Inf. Softw. Technol. 47, 965–978 (2005).
doi: 10.1016/j.infsof.2005.09.005
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
pubmed: 18190707
pmcid: 2395244
doi: 10.1186/gb-2008-9-1-r7
Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
pubmed: 31727128
pmcid: 6857279
doi: 10.1186/s13059-019-1832-y
McCarthy, E. M. & McDonald, J. F. LTR_STRUC: A novel search and identification program for LTR retrotransposons. Bioinformatics 19, 362–367 (2003).
pubmed: 12584121
doi: 10.1093/bioinformatics/btf878
Orozco-Arias, S. et al. Inpactor, integrated and parallel analyzer and classifier of LTR retrotransposons and its application for pineapple LTR retrotransposons diversity and dynamics. Biology 7, 32 (2018).
pmcid: 6022998
doi: 10.3390/biology7020032
Yu, Y., Ouyang, Y. & Yao, W. shinyCircos: An R/Shiny application for interactive creation of Circos plot. Bioinformatics 34, 1229–1231 (2018).
pubmed: 29186362
doi: 10.1093/bioinformatics/btx763
Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015).
pubmed: 26523774
pmcid: 4867222
doi: 10.1038/ng.3435
Sonnhammer, E. L. L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1–GC10 (1995).
pubmed: 8566757
doi: 10.1016/0378-1119(95)00714-8
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
pubmed: 10827456
doi: 10.1016/S0168-9525(00)02024-2
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
doi: 10.1016/S0022-2836(05)80360-2
pubmed: 2231712
Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Contreras-Moreira, B. et al. Analysis of plant pan-genomes and transcriptomes with GET_HOMOLOGUES-EST, a clustering solution for sequences of the same species. Front. Plant Sci. 8, 20 (2017).
doi: 10.3389/fpls.2017.00184
Sievers, F. & Higgins, D. G. Clustal omega. Curr. Protoc. Bioinform. 48, 20 (2014).
doi: 10.1002/0471250953.bi0313s48
Gouy, M., Guindon, S. & Gascuel, O. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
pubmed: 19854763
doi: 10.1093/molbev/msp259
Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).
pubmed: 12824317
pmcid: 168963
doi: 10.1093/nar/gkg556