The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 04 2021
Historique:
received: 09 11 2020
accepted: 23 03 2021
entrez: 15 4 2021
pubmed: 16 4 2021
medline: 10 11 2021
Statut: epublish

Résumé

Caffeine is the most consumed alkaloid stimulant in the world. It is synthesized through the activity of three known N-methyltransferase proteins. Here we are reporting on the 422-Mb chromosome-level assembly of the Coffea humblotiana genome, a wild and endangered, naturally caffeine-free, species from the Comoro archipelago. We predicted 32,874 genes and anchored 88.7% of the sequence onto the 11 chromosomes. Comparative analyses with the African Robusta coffee genome (C. canephora) revealed an extensive genome conservation, despite an estimated 11 million years of divergence and a broad diversity of genome sizes within the Coffea genus. In this genome, the absence of caffeine is likely due to the absence of the caffeine synthase gene which converts theobromine into caffeine through an illegitimate recombination mechanism. These findings pave the way for further characterization of caffeine-free species in the Coffea genus and will guide research towards naturally-decaffeinated coffee drinks for consumers.

Identifiants

pubmed: 33854089
doi: 10.1038/s41598-021-87419-0
pii: 10.1038/s41598-021-87419-0
pmc: PMC8046976
doi:

Substances chimiques

Plant Proteins 0
Caffeine 3G6A5W338E
Methyltransferases EC 2.1.1.-
caffeine synthase EC 2.1.1.-
Theobromine OBD445WZ5P

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8119

Références

Charrier, A. Rapport de Mission aux Comores. 1–8 (1971).
International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species (2020).
Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).
pubmed: 30746478 pmcid: 6357749 doi: 10.1126/sciadv.aav3473
Chadburn, H. & Davis, A. P. Coffea humblotiana, Caféier de Humblot. The IUCN Red List of Threatened Species 2017 e.T108652718A108665565 (2017).
Guyot, R. et al. WCSdb: A database of Wild Coffea Species. Database (2020).
WCSP. World Checklist of Selected Plant Families (Royal Botanic Gardens, 2018).
Hamon, P. et al. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content. Mol. Phylogenet. Evol. 109, 20 (2017).
doi: 10.1016/j.ympev.2017.02.009
Yu, Q. et al. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea): Recent speciation event of Coffea arabica. Plant J. 67, 305–317 (2011).
pubmed: 21457367 doi: 10.1111/j.1365-313X.2011.04590.x
Bertrand,. Sur la Composition Biochimique du Café de la Grande Comore 162–164 (G. Masson, 1901).
Campa, C., Doulbeau, S., Dussert, S., Hamon, S. & Noirot, M. Diversity in bean Caffeine content among wild Coffea species: Evidence of a discontinuous distribution. Food Chem. 91, 633–637 (2005).
doi: 10.1016/j.foodchem.2004.06.032
Ashihara, H. Metabolism of alkaloids in coffee plants. Braz. J. Plant Physiol. 18, 1–8 (2006).
doi: 10.1590/S1677-04202006000100001
Ky, C. L. et al. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P accessions. Food Chem. 75, 223–230 (2001).
doi: 10.1016/S0308-8146(01)00204-7
Perrois, C. et al. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta 241, 179–191 (2014).
pubmed: 25249475 pmcid: 4282694 doi: 10.1007/s00425-014-2170-7
Ashihara, H., Sano, H. & Crozier, A. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69, 841–856 (2008).
pubmed: 18068204 doi: 10.1016/j.phytochem.2007.10.029
Denoeud, F. et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 1181–1184 (2014).
pubmed: 25190796 doi: 10.1126/science.1255274
Lang, T. et al. Numerous compounds orchestrate coffee’s bitterness. J. Agric. Food Chem. 68, 6692–6700 (2020).
pubmed: 32437139 doi: 10.1021/acs.jafc.0c01373
Tran, H. T., Lee, L. S., Furtado, A., Smyth, H. & Henry, R. J. Advances in genomics for the improvement of quality in coffee. J. Sci. Food Agric. 96, 3300–3312 (2016).
pubmed: 26919810 doi: 10.1002/jsfa.7692
Leloup, V., Louvrier, A. & Liardon, R. Degradation Mechanisms of Chlorogenic Acids During Roasting. 192–198 (1995).
Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N. & Sano, H. Producing decaffeinated coffee plants. Nature 423, 823–823 (2003).
pubmed: 12815419 doi: 10.1038/423823a
Charrier, A. La structure genetique des cafeiers spontanes de la region Malgache et leurs relations avec les cafeiers d’arigine Africaine (Eucoffea). (1978).
Mazzafera, P. & Carvalho, A. Breeding for low seed caffeine content of coffee (Coffea L.) by interspecific hybridization. Euphytica 59, 55–60 (1991).
doi: 10.1007/BF00025361
Silvarolla, M. B., Mazzafera, P. & Fazuoli, L. C. A naturally decaffeinated arabica coffee. Nature 429, 826 (2004).
pubmed: 15215853 doi: 10.1038/429826a
Maluf, M. P. et al. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica. Genet. Mol. Biol. 32, 802–810 (2009).
pubmed: 21637458 pmcid: 3036905 doi: 10.1590/S1415-47572009005000090
Mazzafera, P., Baumann, T. W., Shimizu, M. M. & Silvarolla, M. B. Decaf and the steeplechase towards decaffito—the coffee from caffeine-free Arabica plants. Trop. Plant Biol. 2, 63–76 (2009).
doi: 10.1007/s12042-009-9032-7
Razafinarivo, N. J. et al. Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites. Ann. Bot. 111, 20 (2013).
doi: 10.1093/aob/mcs283
Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. https://doi.org/10.1093/nar/gky730 (2018).
doi: 10.1093/nar/gky730 pubmed: 30107434 pmcid: 6323972
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
pubmed: 31375807 pmcid: 7605509 doi: 10.1038/s41587-019-0201-4
Ma, J. & Bennetzen, J. L. Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl. Acad. Sci. 101, 12404–12410 (2004).
pubmed: 15240870 doi: 10.1073/pnas.0403715101 pmcid: 515075
Proost, S. et al. i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, e11–e11 (2012).
pubmed: 22102584 doi: 10.1093/nar/gkr955
Cabanettes, F. & Klopp, C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).
pubmed: 29888139 pmcid: 5991294 doi: 10.7717/peerj.4958
Ribas, A. F., Cenci, A., Combes, M. C., Etienne, H. & Lashermes, P. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. BMC Genom. 12, 20 (2011).
doi: 10.1186/1471-2164-12-240
Xu, Z. et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol. 18, 1–14 (2020).
doi: 10.1186/s12915-020-00795-3
Ly, S. N. et al. Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae. PLoS One 15, e0232295 (2020).
pubmed: 32353023 pmcid: 7192488 doi: 10.1371/journal.pone.0232295
Wicker, T., Yahiaoui, N. & Keller, B. Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J. 51, 631–641 (2007).
pubmed: 17573804 doi: 10.1111/j.1365-313X.2007.03164.x
Davis, A. P. et al. A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Ann. Missouri Bot. Garden 20, 68–78 (2009).
doi: 10.3417/2006205
Wendel, J. F., Jackson, S. A., Meyers, B. C. & Wing, R. A. Evolution of plant genome architecture. Genome Biol. 17, 37 (2016).
pubmed: 26926526 pmcid: 4772531 doi: 10.1186/s13059-016-0908-1
Guyot, R. et al. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. BMC Genom. 13, 103 (2012).
doi: 10.1186/1471-2164-13-103
Razafinarivo, N. J. et al. Geographical gradients in the genome size variation of wild coffee trees (Coffea) native to Africa and Indian Ocean islands. Tree Genet. Genomes 8, 1345–1358 (2012).
doi: 10.1007/s11295-012-0520-9
Guyot, R. et al. Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Mol. Genet. Genom. 291, 1979–1990 (2016).
doi: 10.1007/s00438-016-1235-7
Jin, J.-Q. et al. Hongyacha, a naturally caffeine-free tea plant from Fujian, China. J. Agric. Food Chem. 66, 11311–11319 (2018).
pubmed: 30303011 doi: 10.1021/acs.jafc.8b03433
Mizuno, K. et al. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS Lett. 534, 75–81 (2003).
pubmed: 12527364 doi: 10.1016/S0014-5793(02)03781-X
Deng, C. et al. Metabolite and transcriptome profiling on xanthine alkaloids-fed tea plant (Camellia sinensis) shoot tips and roots reveal the Complex metabolic network for caffeine biosynthesis and degradation. Front. Plant Sci. 11, 551288 (2020).
pubmed: 33013969 pmcid: 7509060 doi: 10.3389/fpls.2020.551288
Deng, W. W., Rakotomalala, J.-J., Nagai, C. & Ashihara, H. Caffeine biosynthesis and purine metabolism in leaves of mascarocoffea species. Eur. Chem. Bull. 6, 223 (2017).
doi: 10.17628/ecb.2017.6.223-228
Ashihara, H. et al. Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of N-methyltransferase genes. Phytochemistry 67, 882–886 (2006).
pubmed: 16624354 doi: 10.1016/j.phytochem.2006.02.016
Davis, A. P., Tosh, J., Ruch, N. & Fay, M. F. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea: Psilanthus subsumed in Coffea. Bot. J. Linn. Soc. 167, 357–377 (2011).
doi: 10.1111/j.1095-8339.2011.01177.x
Hamon, P. et al. Caffeine-free species in the genus coffea. Coffee Health Dis. Prev. 20, 39–44. https://doi.org/10.1016/B978-0-12-409517-5.00005-X (2015).
doi: 10.1016/B978-0-12-409517-5.00005-X
Clifford, M. N., Gibson, C. L., Rakotomalala, J.-J.R., Cros, E. & Charrier, A. Caffeine from green beans of Mascarocoffea. Phytochemistry 30, 4039–4040 (1991).
doi: 10.1016/0031-9422(91)83461-S
Michelmore, R. W. & Meyers, B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).
pubmed: 9847076 doi: 10.1101/gr.8.11.1113
Chevalier, A. Un nouveau Caféier sauvage de Madagascar à grains sans caféine. Rev. Bot. Appl. Agric. Colon. 17, 821–826 (1937).
Dornano, M., Chassevent, F. & Pougneaud, S. Composition et caractéristiques chimiques de Coffea sauvages de Madagascar. II. Recherche de la caféine et d’autres méthylxanthines dans les feuilles et les graines de caféiers sauvages et cultivés. III. Cafamarine et trigonelline contenues dans les graines de trois caféiers sauvages. Café Cacao 11, 235–249 (1967).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
pubmed: 21217122 pmcid: 3051319 doi: 10.1093/bioinformatics/btr011
Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).
pubmed: 27749838 pmcid: 5503144 doi: 10.1038/nmeth.4035
English, A. C. et al. Mind the Gap: Upgrading genomes with Pacific biosciences RS long-read sequencing technology. PLoS One 7, e47768 (2012).
pubmed: 23185243 pmcid: 3504050 doi: 10.1371/journal.pone.0047768
Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 20 (2009).
doi: 10.1002/0471250953.bi0410s25
Nachtweide, S. & Stanke, M. Multi-genome annotation with AUGUSTUS. In Gene Prediction, vol 1962 (ed. Kollmar, M.) 139–160 (Springer, 2019).
Gremme, G., Brendel, V., Sparks, M. E. & Kurtz, S. Engineering a software tool for gene structure prediction in higher organisms. Inf. Softw. Technol. 47, 965–978 (2005).
doi: 10.1016/j.infsof.2005.09.005
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
pubmed: 18190707 pmcid: 2395244 doi: 10.1186/gb-2008-9-1-r7
Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
pubmed: 31727128 pmcid: 6857279 doi: 10.1186/s13059-019-1832-y
McCarthy, E. M. & McDonald, J. F. LTR_STRUC: A novel search and identification program for LTR retrotransposons. Bioinformatics 19, 362–367 (2003).
pubmed: 12584121 doi: 10.1093/bioinformatics/btf878
Orozco-Arias, S. et al. Inpactor, integrated and parallel analyzer and classifier of LTR retrotransposons and its application for pineapple LTR retrotransposons diversity and dynamics. Biology 7, 32 (2018).
pmcid: 6022998 doi: 10.3390/biology7020032
Yu, Y., Ouyang, Y. & Yao, W. shinyCircos: An R/Shiny application for interactive creation of Circos plot. Bioinformatics 34, 1229–1231 (2018).
pubmed: 29186362 doi: 10.1093/bioinformatics/btx763
Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015).
pubmed: 26523774 pmcid: 4867222 doi: 10.1038/ng.3435
Sonnhammer, E. L. L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1–GC10 (1995).
pubmed: 8566757 doi: 10.1016/0378-1119(95)00714-8
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
pubmed: 10827456 doi: 10.1016/S0168-9525(00)02024-2
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
doi: 10.1016/S0022-2836(05)80360-2 pubmed: 2231712
Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Contreras-Moreira, B. et al. Analysis of plant pan-genomes and transcriptomes with GET_HOMOLOGUES-EST, a clustering solution for sequences of the same species. Front. Plant Sci. 8, 20 (2017).
doi: 10.3389/fpls.2017.00184
Sievers, F. & Higgins, D. G. Clustal omega. Curr. Protoc. Bioinform. 48, 20 (2014).
doi: 10.1002/0471250953.bi0313s48
Gouy, M., Guindon, S. & Gascuel, O. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
pubmed: 19854763 doi: 10.1093/molbev/msp259
Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).
pubmed: 12824317 pmcid: 168963 doi: 10.1093/nar/gkg556

Auteurs

Nathalie Raharimalala (N)

Centre National de Recherche Appliquée au Développement Rural, BP 1444, 101, Ambatobe, Antananarivo, Madagascar.

Stephane Rombauts (S)

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
VIB Center for Plant Systems Biology, 9052, Gent, Belgium.

Andrew McCarthy (A)

European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble Cedex 9, France.

Andréa Garavito (A)

Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia.
Centro de Bioinformática y biología computacional de Colombia - BIOS, Ecoparque los Yarumos, Manizales, Caldas, Colombia.

Simon Orozco-Arias (S)

Department of Systems and Informatics, Universidad de Caldas, Manizales, Colombia.
Universidad Autónoma de Manizales, Manizales, Colombia.

Laurence Bellanger (L)

Nestle Research-Plant Science Research Unit, BP 49716, 37097, Tours Cedex 2, France.

Alexa Yadira Morales-Correa (AY)

Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia.

Solène Froger (S)

Nestle Research-Plant Science Research Unit, BP 49716, 37097, Tours Cedex 2, France.

Stéphane Michaux (S)

Nestle Research-Plant Science Research Unit, BP 49716, 37097, Tours Cedex 2, France.

Victoria Berry (V)

Nestle Research-Plant Science Research Unit, BP 49716, 37097, Tours Cedex 2, France.

Sylviane Metairon (S)

Nestle Research, Société des Produits Nestlé SA, 1015, Lausanne, Switzerland.

Coralie Fournier (C)

Nestle Research, Société des Produits Nestlé SA, 1015, Lausanne, Switzerland.
University of Geneva, CMU-Décanat, 1 Rue Michel Servet, 1211, Geneva 4, Switzerland.

Maud Lepelley (M)

Nestle Research-Plant Science Research Unit, BP 49716, 37097, Tours Cedex 2, France.

Lukas Mueller (L)

Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.

Emmanuel Couturon (E)

Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France.

Perla Hamon (P)

Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France.

Jean-Jacques Rakotomalala (JJ)

Centre National de Recherche Appliquée au Développement Rural, BP 1444, 101, Ambatobe, Antananarivo, Madagascar.

Patrick Descombes (P)

Nestle Research, Société des Produits Nestlé SA, 1015, Lausanne, Switzerland.

Romain Guyot (R)

Universidad Autónoma de Manizales, Manizales, Colombia. romain.guyot@ird.fr.
Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France. romain.guyot@ird.fr.

Dominique Crouzillat (D)

Nestle Research-Plant Science Research Unit, BP 49716, 37097, Tours Cedex 2, France. dominique.crouzillat@rdto.nestle.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH