Clonally expanded EOMES


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
06 2021
Historique:
received: 05 08 2020
accepted: 09 04 2021
pubmed: 22 5 2021
medline: 22 7 2021
entrez: 21 5 2021
Statut: ppublish

Résumé

Regulatory T (T

Identifiants

pubmed: 34017124
doi: 10.1038/s41590-021-00930-4
pii: 10.1038/s41590-021-00930-4
doi:

Substances chimiques

EOMES protein, human 0
FOXP3 protein, human 0
Forkhead Transcription Factors 0
Immune Checkpoint Inhibitors 0
PDCD1 protein, human 0
Programmed Cell Death 1 Receptor 0
T-Box Domain Proteins 0
CHI3L2 protein, human EC 3.2.1.14
Chitinases EC 3.2.1.14
GZMK protein, human EC 3.4.21.-
Granzymes EC 3.4.21.-

Types de publication

Journal Article Observational Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

735-745

Subventions

Organisme : Cancer Research UK
ID : 26813
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 22794
Pays : United Kingdom

Références

Dobrzanski, M. J. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front. Oncol. 3, 63 (2013).
pubmed: 23533029 pmcid: 3607796 doi: 10.3389/fonc.2013.00063
Shang, B., Liu, Y., Jiang, S.-J. & Liu, Y. Prognostic value of tumor-infiltrating FoxP3
pubmed: 26462617 pmcid: 4604472 doi: 10.1038/srep15179
Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).
pubmed: 24315098 pmcid: 3894749 doi: 10.1016/j.cell.2013.10.054
Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue T
pubmed: 22722857 pmcid: 3387339 doi: 10.1038/nature11132
Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ
pubmed: 26272906 pmcid: 4700932 doi: 10.1126/science.aaa9420
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4
pubmed: 12612578 doi: 10.1038/ni904 pmcid: 12612578
Tanaka, A. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 27, 109–118 (2017).
pubmed: 27995907 doi: 10.1038/cr.2016.151 pmcid: 27995907
Häringer, B., Lozza, L., Steckel, B. & Geginat, J. Identification and characterization of IL-10/IFN-γ-producing effector-like T cells with regulatory function in human blood. J. Exp. Med. 206, 1009–1017 (2009).
pubmed: 19414553 pmcid: 2715038 doi: 10.1084/jem.20082238
Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797–801 (2009).
pubmed: 19570826 pmcid: 2768608 doi: 10.4049/jimmunol.0901233
Zhang, P. et al. Eomesodermin promotes the development of type 1 regulatory T (T
pubmed: 28738016 pmcid: 5714294 doi: 10.1126/sciimmunol.aah7152
Gagliani, N. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 19, 739–746 (2013).
pubmed: 23624599 doi: 10.1038/nm.3179 pmcid: 23624599
Gruarin, P. et al. Eomesodermin controls a unique differentiation program in human IL-10 and IFN-γ coproducing regulatory T cells. Eur. J. Immunol. 49, 96–111 (2019).
pubmed: 30431161 doi: 10.1002/eji.201847722 pmcid: 30431161
Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 21, 638–646 (2015).
pubmed: 26005855 pmcid: 4476246 doi: 10.1038/nm.3868
Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004–1019 (2018).
pubmed: 30566879 doi: 10.1016/j.immuni.2018.12.001 pmcid: 30566879
Dobrzanski, M. J. et al. Immunotherapy with IL-10- and IFN-γ-producing CD4 effector cells modulate ‘Natural’ and ‘Inducible’ CD4 TReg cell subpopulation levels: observations in four cases of patients with ovarian cancer. Cancer Immunol. Immunother. 61, 839–854 (2012).
pubmed: 22083345 doi: 10.1007/s00262-011-1128-x pmcid: 22083345
Marshall, N. A. et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103, 1755–1762 (2004).
pubmed: 14604957 doi: 10.1182/blood-2003-07-2594 pmcid: 14604957
Pedroza-Gonzalez, A. et al. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncoimmunology 4, e1008355 (2015).
pubmed: 26155417 pmcid: 4485712 doi: 10.1080/2162402X.2015.1008355
Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).
pubmed: 26967286 pmcid: 4973889 doi: 10.1016/j.cell.2016.02.048
Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).
pubmed: 28983043 pmcid: 5654495 doi: 10.1126/science.aan6828
Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).
pubmed: 29961579 pmcid: 29961579 doi: 10.1016/j.cell.2018.05.060
Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).
pubmed: 29942094 doi: 10.1038/s41591-018-0045-3 pmcid: 29942094
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
pubmed: 27124452 pmcid: 27124452 doi: 10.1126/science.aad0501
Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).
pubmed: 28622514 doi: 10.1016/j.cell.2017.05.035 pmcid: 28622514
Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).
pubmed: 25651787 doi: 10.3322/caac.21262 pmcid: 25651787
Webber, W. M. A., & Zobel, J. A similarity measure for indefinite rankings. ACM Trans. Inf. Syst. 28, 20 (2010).
doi: 10.1145/1852102.1852106
De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016).
pubmed: 27851914 pmcid: 5119953 doi: 10.1016/j.immuni.2016.10.021
Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016).
pubmed: 27851913 pmcid: 5134901 doi: 10.1016/j.immuni.2016.10.032
Togashi, Y., Shitara, K. & Nishikawa, H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356–371 (2019).
pubmed: 30705439 doi: 10.1038/s41571-019-0175-7 pmcid: 30705439
Alfen, J. S. et al. Intestinal IFN-γ-producing type 1 regulatory T cells coexpress CCR5 and programmed cell death protein 1 and downregulate IL-10 in the inflamed guts of patients with inflammatory bowel disease. J. Allergy Clin. Immunol. 142, 1537–1547.e8 (2018).
pubmed: 29369775 doi: 10.1016/j.jaci.2017.12.984 pmcid: 29369775
Facciotti, F. et al. Evidence for a pathogenic role of extrafollicular, IL-10-producing CCR6
pubmed: 32184325 doi: 10.1073/pnas.1917834117 pmcid: 32184325
Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).
pubmed: 30479382 doi: 10.1038/s41586-018-0694-x pmcid: 30479382
Keller, M. D. et al. T-cell receptor sequencing demonstrates persistence of virus-specific T cells after antiviral immunotherapy. Br. J. Haematol. 187, 206–218 (2019).
pubmed: 31219185 pmcid: 6786907 doi: 10.1111/bjh.16053
Areshkov, P. O., Avdieiev, S. S., Balynska, O. V., Leroith, D. & Kavsan, V. M. Two closely related human members of chitinase-like family, CHI3L1 and CHI3L2, activate ERK1/2 in 293 and U373 cells but have the different influence on cell proliferation. Int. J. Biol. Sci. 8, 39–48 (2012).
pubmed: 22211103 doi: 10.7150/ijbs.8.39 pmcid: 22211103
Lee, H.-O. et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet. 52, 594–603 (2020).
pubmed: 32451460 doi: 10.1038/s41588-020-0636-z pmcid: 32451460
Sato, M. et al. Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations. Mol. Cancer Res. 11, 638–650 (2013).
pubmed: 23449933 pmcid: 3687022 doi: 10.1158/1541-7786.MCR-12-0634-T
Smith, J. J. et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 138, 958–968 (2010).
pubmed: 19914252 doi: 10.1053/j.gastro.2009.11.005 pmcid: 19914252
Petitprez, F., Meylan, M., de Reyniès, A., Sautès-Fridman, C. & Fridman, W. H. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front. Immunol. 11, 784 (2020).
pubmed: 32457745 pmcid: 7221158 doi: 10.3389/fimmu.2020.00784
Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).
pubmed: 6898788 pmcid: 6898788 doi: 10.1038/s41591-019-0654-5
Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).
pubmed: 16903904 doi: 10.1111/j.0105-2896.2006.00420.x pmcid: 16903904
Del Prete, G. et al. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J. Immunol. 150, 353–360 (1993).
pubmed: 8419468 pmcid: 8419468
Zielinski, C. E. et al. Pathogen-induced human T
pubmed: 22466287 doi: 10.1038/nature10957 pmcid: 22466287
Gagliani, N. et al. T
pubmed: 25924064 pmcid: 4498984 doi: 10.1038/nature14452
Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e11 (2017).
pubmed: 28552347 pmcid: 5504703 doi: 10.1016/j.cell.2017.05.002
Bluestone, J. A., Mackay, C. R., O’Shea, J. J. & Stockinger, B. The functional plasticity of T cell subsets. Nat. Rev. Immunol. 9, 811–816 (2009).
pubmed: 19809471 pmcid: 3075537 doi: 10.1038/nri2654
Sakaguchi, S., Vignali, D. A. A., Rudensky, A. Y., Niec, R. E. & Waldmann, H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461–467 (2013).
pubmed: 23681097 doi: 10.1038/nri3464 pmcid: 23681097
Alvisi, G. et al. IRF4 instructs effector Treg differentiation and immune suppression in human cancer. J. Clin. Invest. 130, 3137–3150 (2020).
pubmed: 32125291 pmcid: 7260038 doi: 10.1172/JCI130426
Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8
pubmed: 30154266 pmcid: 6170179 doi: 10.1084/jem.20180684
Galletti, G. et al. Two subsets of stem-like CD8
pubmed: 33046887 pmcid: 7610790 doi: 10.1038/s41590-020-0791-5
Kzhyshkowska, J., Yin, S., Liu, T., Riabov, V. & Mitrofanova, I. Role of chitinase-like proteins in cancer. Biol. Chem. 397, 231–247 (2016).
pubmed: 26733160 doi: 10.1515/hsz-2015-0269 pmcid: 26733160
Libreros, S. & Iragavarapu-Charyulu, V. YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J. Leukoc. Biol. 98, 931–936 (2015).
pubmed: 26310833 pmcid: 6608021 doi: 10.1189/jlb.3VMR0415-142R
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532 pmcid: 29409532 doi: 10.1186/s13059-017-1382-0
McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).
pubmed: 5408845 pmcid: 5408845
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
doi: 10.1038/nbt.4314
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 doi: 10.1073/pnas.0506580102 pmcid: 16199517
Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969 (2019).
pubmed: 31160786 doi: 10.1038/s41596-019-0166-2 pmcid: 31160786
Lugli, E., Zanon, V., Mavilio, D. & Roberto, A. FACS analysis of memory T lymphocytes. Methods Mol. Biol. 1514, 31–47 (2017).
pubmed: 27787790 doi: 10.1007/978-1-4939-6548-9_3 pmcid: 27787790

Auteurs

Raoul J P Bonnal (RJP)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Grazisa Rossetti (G)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Enrico Lugli (E)

Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
Flow Cytometry Core, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

Marco De Simone (M)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Paola Gruarin (P)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Jolanda Brummelman (J)

Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

Lorenzo Drufuca (L)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Marco Passaro (M)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Ramona Bason (R)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Federica Gervasoni (F)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Giulia Della Chiara (G)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Claudia D'Oria (C)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.

Martina Martinovic (M)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Serena Curti (S)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Valeria Ranzani (V)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Chiara Cordiglieri (C)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Giorgia Alvisi (G)

Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

Emilia Maria Cristina Mazza (EMC)

Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.

Stefania Oliveto (S)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Ylenia Silvestri (Y)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Elena Carelli (E)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Saveria Mazzara (S)

Division of Hematopathology, European Institute of Oncology (IEO) IRCCS, Milan, Italy.

Roberto Bosotti (R)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Maria Lucia Sarnicola (ML)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Chiara Godano (C)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Valeria Bevilacqua (V)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Mariangela Lorenzo (M)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.

Salvatore Siena (S)

Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.
Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.

Emanuela Bonoldi (E)

Pathology and Cytogenetics Unit, Grande Ospedale Metropolitano Niguarda, Milan, Italy.

Andrea Sartore-Bianchi (A)

Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.
Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.

Alessio Amatu (A)

Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.

Giulia Veronesi (G)

Faculty of Medicine and Surgery Vita-Salute San Raffaele University, Milan, Italy.
Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Pierluigi Novellis (P)

Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Marco Alloisio (M)

Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.

Alessandro Giani (A)

Department of Surgery, Milano-Bicocca University, San Gerardo Hospital, Monza, Italy.

Nicola Zucchini (N)

Department of Pathology, San Gerardo Hospital, Monza, Italy.

Enrico Opocher (E)

Unità Operativa Chirurgia Epatobiliopancreatica e Digestiva, Ospedale San Paolo, Milan, Italy.
Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.

Andrea Pisani Ceretti (AP)

Unità Operativa Chirurgia Epatobiliopancreatica e Digestiva, Ospedale San Paolo, Milan, Italy.

Nicolò Mariani (N)

Unità Operativa Chirurgia Epatobiliopancreatica e Digestiva, Ospedale San Paolo, Milan, Italy.

Stefano Biffo (S)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy.
Department of Biosciences, University of Milan, Milan, Italy.

Daniele Prati (D)

Department of Transfusion Medicine and Hematology, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Alberto Bardelli (A)

Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Turin, Italy.
Department of Oncology, University of Torino, Turin, Italy.

Jens Geginat (J)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy. geginat@ingm.org.
Department of Clinical Sciences and Community Health, Università degli Studi, Milan, Italy. geginat@ingm.org.

Antonio Lanzavecchia (A)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy. lanzavecchia@ingm.org.

Sergio Abrignani (S)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy. abrignani@ingm.org.
Department of Clinical Sciences and Community Health, Università degli Studi, Milan, Italy. abrignani@ingm.org.

Massimiliano Pagani (M)

Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy. massimiliano.pagani@ifom.eu.
FIRC Institute of Molecular Oncology (IFOM), Milan, Italy. massimiliano.pagani@ifom.eu.
Department of Medical Biotechnology and Translational Medicine, Università degli Studi, Milan, Italy. massimiliano.pagani@ifom.eu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH