Comparative and pangenomic analysis of the genus Streptomyces.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 11 2022
Historique:
received: 12 05 2022
accepted: 30 09 2022
entrez: 7 11 2022
pubmed: 8 11 2022
medline: 10 11 2022
Statut: epublish

Résumé

Streptomycetes are highly metabolically gifted bacteria with the abilities to produce bioproducts that have profound economic and societal importance. These bioproducts are produced by metabolic pathways including those for the biosynthesis of secondary metabolites and catabolism of plant biomass constituents. Advancements in genome sequencing technologies have revealed a wealth of untapped metabolic potential from Streptomyces genomes. Here, we report the largest Streptomyces pangenome generated by using 205 complete genomes. Metabolic potentials of the pangenome and individual genomes were analyzed, revealing degrees of conservation of individual metabolic pathways and strains potentially suitable for metabolic engineering. Of them, Streptomyces bingchenggensis was identified as a potent degrader of plant biomass. Polyketide, non-ribosomal peptide, and gamma-butyrolactone biosynthetic enzymes are primarily strain specific while ectoine and some terpene biosynthetic pathways are highly conserved. A large number of transcription factors associated with secondary metabolism are strain-specific while those controlling basic biological processes are highly conserved. Although the majority of genes involved in morphological development are highly conserved, there are strain-specific varieties which may contribute to fine tuning the timing of cellular differentiation. Overall, these results provide insights into the metabolic potential, regulation and physiology of streptomycetes, which will facilitate further exploitation of these important bacteria.

Identifiants

pubmed: 36344558
doi: 10.1038/s41598-022-21731-1
pii: 10.1038/s41598-022-21731-1
pmc: PMC9640686
doi:

Substances chimiques

Polyketides 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

18909

Subventions

Organisme : U.S. Department of Energy
ID : DE-AC02-05CH11231

Informations de copyright

© 2022. The Author(s).

Références

FEMS Microbiol Lett. 2000 Aug 1;189(1):93-5
pubmed: 10913872
Sci Rep. 2017 Feb 15;7:42623
pubmed: 28198423
J Bacteriol. 1998 Mar;180(5):1334-7
pubmed: 9495776
Biosci Biotechnol Biochem. 2007 Feb;71(2):283-99
pubmed: 17284841
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432
pubmed: 30357350
Microb Cell Fact. 2020 May 6;19(1):99
pubmed: 32375781
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):343-70
pubmed: 26364200
mBio. 2012 Dec 11;3(6):
pubmed: 23232715
Bioinformatics. 2012 Feb 1;28(3):416-8
pubmed: 22130594
Mol Microbiol. 2009 Mar;71(5):1250-62
pubmed: 19154327
Nat Prod Rep. 2009 Nov;26(11):1362-84
pubmed: 19844637
Nat Rev Microbiol. 2018 May;16(5):304-315
pubmed: 29456243
J Bacteriol. 2008 Jul;190(14):4971-8
pubmed: 18487344
Nucleic Acids Res. 2019 Jan 25;47(2):621-633
pubmed: 30371884
Annu Rev Microbiol. 1996;50:553-90
pubmed: 8905091
J Bacteriol. 2001 Jul;183(14):4374-81
pubmed: 11418579
Nucleic Acids Res. 2016 Aug 19;44(14):6614-24
pubmed: 27342282
Mol Microbiol. 2012 Jul;85(2):326-44
pubmed: 22651816
mBio. 2019 Feb 5;10(1):
pubmed: 30723132
Nat Rev Microbiol. 2009 Jan;7(1):36-49
pubmed: 19079351
Nucleic Acids Res. 2018 Jan 4;46(D1):D851-D860
pubmed: 29112715
Mol Microbiol. 2013 Mar;87(6):1223-36
pubmed: 23347076
J Bacteriol. 2000 Aug;182(16):4606-16
pubmed: 10913095
Curr Opin Microbiol. 2005 Apr;8(2):208-15
pubmed: 15802254
J Bacteriol. 2000 Aug;182(16):4596-605
pubmed: 10913094
Antimicrob Agents Chemother. 1979 Mar;15(3):361-7
pubmed: 464561
Mol Microbiol. 2007 May;64(3):719-37
pubmed: 17462019
Appl Microbiol Biotechnol. 2010 Apr;86(3):921-9
pubmed: 20012281
FEMS Microbiol Rev. 2010 Mar;34(2):171-98
pubmed: 20088961
Nat Chem Biol. 2007 Nov;3(11):711-5
pubmed: 17873868
J Am Chem Soc. 1967 Oct 25;89(22):5737-9
pubmed: 5622366
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9821-6
pubmed: 21628577
J Bacteriol. 1998 May;180(9):2515-21
pubmed: 9573206
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6828-6833
pubmed: 29903901
Cell. 1989 Oct 6;59(1):133-43
pubmed: 2507166
Nucleic Acids Res. 1997 Jul 1;25(13):2566-73
pubmed: 9185565
Mol Microbiol. 1995 Jul;17(1):37-48
pubmed: 7476207
J Bacteriol. 1990 Jun;172(6):3367-78
pubmed: 2160942
Annu Rev Microbiol. 1988;42:547-74
pubmed: 3060001
Nucleic Acids Res. 2018 Jan 4;46(D1):D493-D496
pubmed: 29040681
Mol Microbiol. 2001 Apr;40(1):257-69
pubmed: 11298292
mBio. 2022 Apr 26;13(2):e0045622
pubmed: 35357207
Microbiology (Reading). 1999 Sep;145 ( Pt 9):2229-2243
pubmed: 10517576
Mol Cell Proteomics. 2012 Feb;11(2):M111.013797
pubmed: 22147733
J Microbiol Biotechnol. 2015 Oct;25(10):1599-605
pubmed: 26032364
Mol Microbiol. 2014 Nov;94(3):483-5
pubmed: 25200025
BMC Genomics. 2012 Nov 15;13:628
pubmed: 23153078
BMC Genomics. 2008 Dec 16;9:604
pubmed: 19087294
mBio. 2017 Jun 6;8(3):
pubmed: 28588130
FEMS Microbiol Lett. 2011 Feb;315(1):54-62
pubmed: 21175743
Front Microbiol. 2017 Dec 19;8:2546
pubmed: 29312231
Gene. 2012 Jan 15;492(1):71-80
pubmed: 22108710
Nat Commun. 2019 Jan 31;10(1):516
pubmed: 30705269
Mol Microbiol. 2000 Jun;36(6):1265-78
pubmed: 10931278
Science. 1953 Sep 4;118(3062):259-66
pubmed: 13089668
Mol Microbiol. 2005 Sep;57(5):1252-64
pubmed: 16101999
Nat Prod Rep. 2021 Jul 21;38(7):1330-1361
pubmed: 33393961
J Antibiot (Tokyo). 2017 May;70(5):534-541
pubmed: 28293039
Mol Microbiol. 1996 Dec;22(5):881-93
pubmed: 8971710
Microbiol Res. 2011 Jul 20;166(5):369-79
pubmed: 20870400
Annu Rev Microbiol. 2016 Sep 8;70:235-54
pubmed: 27607553
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Nat Prod Rep. 2014 Jan;31(1):61-108
pubmed: 24292120
Mol Microbiol. 2009 Nov;74(3):557-81
pubmed: 19737356
DNA Res. 2012 Jun;19(3):259-73
pubmed: 22449632
Mol Microbiol. 2010 Oct;78(2):361-79
pubmed: 20979333
J Bacteriol. 2005 Jun;187(12):4050-63
pubmed: 15937168
J Bacteriol. 2000 Mar;182(5):1286-95
pubmed: 10671449
Curr Opin Chem Biol. 2015 Dec;29:108-19
pubmed: 26583519
Nat Rev Microbiol. 2015 Dec;13(12):749-60
pubmed: 26499894
Nat Biotechnol. 2020 Jan;38(1):76-83
pubmed: 31819261
Biomolecules. 2015 Jun 26;5(3):1245-65
pubmed: 26131973
Curr Opin Microbiol. 2016 Dec;34:53-59
pubmed: 27504539
Front Microbiol. 2017 Oct 17;8:2016
pubmed: 29089938
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51
pubmed: 22645317
Annu Rev Microbiol. 2014;68:357-76
pubmed: 25002089
PLoS One. 2011;6(7):e22420
pubmed: 21811606
Mol Microbiol. 2019 Aug;112(2):420-431
pubmed: 31269533
J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):281-299
pubmed: 30484124
Science. 1988 Nov 18;242(4881):1040-2
pubmed: 3194753
Mol Microbiol. 1999 Jul;33(1):97-107
pubmed: 10411727
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2378-83
pubmed: 17277085
Appl Microbiol Biotechnol. 2012 Jan;93(2):891-900
pubmed: 22159607
PLoS One. 2014 Aug 27;9(8):e106181
pubmed: 25162599
Appl Environ Microbiol. 2014 Aug;80(15):4692-701
pubmed: 24837391
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Nat Prod Rep. 2018 Jun 20;35(6):575-604
pubmed: 29721572
Appl Environ Microbiol. 2008 Dec;74(23):7286-96
pubmed: 18849444
Nat Commun. 2022 Jun 17;13(1):3502
pubmed: 35715393
Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45
pubmed: 26553804
Open Biol. 2016 Jan;6(1):150149
pubmed: 26740586
J Bacteriol. 2008 Sep;190(17):5879-89
pubmed: 18586935
Appl Microbiol Biotechnol. 2012 Jul;95(1):77-89
pubmed: 22588501
Nat Commun. 2016 Jun 02;7:11605
pubmed: 27251447
Gene. 1995 Feb 3;153(1):41-8
pubmed: 7883183
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
Syst Biol. 2010 May;59(3):307-21
pubmed: 20525638
Bioinformatics. 2020 Apr 1;36(7):2251-2252
pubmed: 31742321
Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35
pubmed: 33978755
Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314
pubmed: 30418610
Mol Microbiol. 2001 Oct;42(1):205-14
pubmed: 11679079
Microbiol Mol Biol Rev. 2015 Nov 25;80(1):1-43
pubmed: 26609051
J Biochem. 1995 Sep;118(3):488-93
pubmed: 8690706

Auteurs

Hiroshi Otani (H)

DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. hotani@lbl.gov.
Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. hotani@lbl.gov.

Daniel W Udwary (DW)

DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Nigel J Mouncey (NJ)

DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. nmouncey@lbl.gov.
Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. nmouncey@lbl.gov.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH