Genetic diversity analysis and DNA fingerprint construction of Zanthoxylum species based on SSR and iPBS markers.
Zanthoxylum
DNA fingerprint
Genetic diversity
Genetic structure
SSR markers
iPBS markers
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
07 Sep 2024
07 Sep 2024
Historique:
received:
01
03
2024
accepted:
03
07
2024
medline:
8
9
2024
pubmed:
8
9
2024
entrez:
7
9
2024
Statut:
epublish
Résumé
Zanthoxylum is a versatile economic tree species utilized for its spice, seasoning, oil, medicinal, and industrial raw material applications, and it has a lengthy history of cultivation and domestication in China. This has led to the development of numerous cultivars. However, the phenomenon of mixed cultivars and confusing names has significantly obstructed the effective utilization of Zanthoxylum resources and industrial development. Consequently, conducting genetic diversity studies and cultivar identification on Zanthoxylum are crucial. This research analyzed the genetic traits of 80 Zanthoxylum cultivars using simple sequence repeat (SSR) and inter-Primer Binding Site (iPBS) molecular markers, leading to the creation of a DNA fingerprint. This study identified 206 and 127 alleles with 32 SSR markers and 10 iPBS markers, respectively, yielding an average of 6.4 and 12.7 alleles (Na) per marker. The average polymorphism information content (PIC) for the SSR and iPBS markers was 0.710 and 0.281, respectively. The genetic similarity coefficients for the 80 Zanthoxylum accessions ranged from 0.0947 to 0.9868 and from 0.2206 to 1.0000, with mean values of 0.3864 and 0.5215, respectively, indicating substantial genetic diversity. Cluster analysis, corroborated by principal coordinate analysis (PCoA), categorized these accessions into three primary groups. Analysis of the genetic differentiation among the three Zanthoxylum (Z. bungeanum, Z. armatum, and Z. piperitum) populations using SSR markers revealed a mean genetic differentiation coefficient (Fst) of 0.335 and a gene flow (Nm) of 0.629, suggesting significant genetic divergence among the populations. Molecular variance analysis (AMOVA) indicated that 65% of the genetic variation occurred within individuals, while 35% occurred among populations. Bayesian model-based analysis of population genetic structure divided all materials into two groups. The combined PI and PIsibs value of the 32 SSR markers were 4.265 × 10
Identifiants
pubmed: 39244564
doi: 10.1186/s12870-024-05373-1
pii: 10.1186/s12870-024-05373-1
doi:
Substances chimiques
Genetic Markers
0
DNA, Plant
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
843Subventions
Organisme : National Key R&D Program of China
ID : 2019YFD1001200
Organisme : National Key R&D Program of China
ID : 2019YFD1001200
Organisme : National Key R&D Program of China
ID : 2019YFD1001200
Organisme : National Key R&D Program of China
ID : 2019YFD1001200
Organisme : National Key R&D Program of China
ID : 2019YFD1001200
Organisme : Research on the Selection and Breeding of New High-Quality and Labor-Saving Cultivars of Chinese Pepper and Supporting Technology
ID : 2021YFYZ0032
Organisme : Research on the Selection and Breeding of New High-Quality and Labor-Saving Cultivars of Chinese Pepper and Supporting Technology
ID : 2021YFYZ0032
Organisme : Research on the Selection and Breeding of New High-Quality and Labor-Saving Cultivars of Chinese Pepper and Supporting Technology
ID : 2021YFYZ0032
Informations de copyright
© 2024. The Author(s).
Références
Zhang M, Wang J, Zhu L, et al. Zanthoxylum Bungeanum Maxim. (Rutaceae): a systematic review of its traditional uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicology. Int J Mol Sci. 2017;18(10):2172.
pubmed: 29057808
pmcid: 5666853
doi: 10.3390/ijms18102172
Guo T, Deng YX, Xie H, et al. Antinociceptive and anti-inflammatory activities of ethyl acetate fraction from Zanthoxylum armatum in mice. Fitoterapia. 2011;82(3):347–51.
pubmed: 21059381
doi: 10.1016/j.fitote.2010.11.004
Feng S, Yang T, Liu Z, et al. Genetic diversity and relationships of wild and cultivated Zanthoxylum germplasms based on sequence-related amplified polymorphism (SRAP) markers. Genet Resour Crop Evol. 2015;62:1193–204.
doi: 10.1007/s10722-015-0222-x
Feng S, Liu Z, Chen L, et al. Phylogenetic relationships among cultivated Zanthoxylum species in China based on cpDNA markers. Tree Genet Genomes. 2016;12:1–9.
doi: 10.1007/s11295-016-1005-z
Xie DY, Chen QY. Utilization of Chinese prickly ash in ancient Chinese people’s Diet. Chuxiong Normal Univ. 2013;28:10–3.
Chen X, Tian L, Tian J, et al. Extensive sampling provides New insights into phylogenetic relationships between Wild and Domesticated Zanthoxylum species in China. Horticulturae. 2022;8(5):440.
doi: 10.3390/horticulturae8050440
Guichoux E, Lagache L, Wagner S, et al. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11(4):591–611.
pubmed: 21565126
doi: 10.1111/j.1755-0998.2011.03014.x
UPOV. Guidelines for DNA-profiling: Molecular marker selection and database construction/BMT Guidelines (proj.9). Geneva. 2007; Switzerland:3–4.
Li J, Li S, Kong L, Wang L, Wei A, Liu Y. Genome survey of Zanthoxylum Bungeanum and development of genomic-SSR markers in congeneric species. Biosci Rep. 2020;40(6):BSR20201101.
pubmed: 32558907
pmcid: 7322109
doi: 10.1042/BSR20201101
Zhao LL, Feng SJ, Tian JY, et al. Internal transcribed spacer 2 (ITS 2) barcodes: a useful tool for identifying Chinese Zanthoxylum. Appl Plant Sci. 2018;6(6):e01157.
pubmed: 30131899
pmcid: 6025816
doi: 10.1002/aps3.1157
Feng S, Zhao L, Liu Z, et al. De novo transcriptome assembly of Zanthoxylum bungeanum using Illumina sequencing for evolutionary analysis and simple sequence repeat marker development. Sci Rep. 2017;7(1):16754.
pubmed: 29196697
pmcid: 5711952
doi: 10.1038/s41598-017-15911-7
Feng S, Yang T, Li X, et al. Genetic relationships of Chinese prickly ash as revealed by ISSR markers. Biologia. 2015;70:45–51.
doi: 10.1515/biolog-2015-0005
Feng S, Liu Z, Hu Y, Tian J, Yang T, Wei A. Genomic analysis reveals the genetic diversity, population structure, evolutionary history and relationships of Chinese pepper. Hortic Res. 2020;7:158.
pubmed: 33082965
pmcid: 7527552
doi: 10.1038/s41438-020-00376-z
Kalendar R, Antonius K, Smýkal P, Schulman AH. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet. 2010;121(8):1419–30.
pubmed: 20623102
doi: 10.1007/s00122-010-1398-2
Amom T, Nongdam P. The use of molecular marker methods in plants: a review. Int J Curr Res Rev. 2017;9(17):1–7.
Milovanov A, Zvyagin A, Daniyarov A, et al. Genetic analysis of the grapevine genotypes of the Russian Vitis ampelographic collection using iPBS markers. Genetica. 2019;147:91–101.
pubmed: 30783944
doi: 10.1007/s10709-019-00055-5
Ali F, Yılmaz A, Nadeem MA, et al. Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers. PLoS ONE. 2019;14(2):e0211985.
pubmed: 30807571
pmcid: 6391045
doi: 10.1371/journal.pone.0211985
Amom T, Tikendra L, Apana N, et al. Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry. 2020;174:112330.
pubmed: 32146386
doi: 10.1016/j.phytochem.2020.112330
Hu L, Xu Z, Fan R, et al. The complex genome and adaptive evolution of polyploid Chinese pepper (Zanthoxylum Armatum and Zanthoxylum Bungeanum). Plant Biotechnol J. 2023;21(1):78–96.
pubmed: 36117410
doi: 10.1111/pbi.13926
Porebski S, Bailey LG, Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biology Report. 1997;15:8–15.
doi: 10.1007/BF02772108
Fan W, Gai H, Sun X, et al. DataFormater, a software for SSR data formatting to develop population genetics analysis. Mol Plant Breed. 2016;14:265–70.
Peakall ROD, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288–95.
doi: 10.1111/j.1471-8286.2005.01155.x
Rohlf FJ. NTSYS 2.1: numerical taxonomic and multivariate analysis system. New York, Exeter Software. 2000.
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.
pubmed: 10835412
pmcid: 1461096
doi: 10.1093/genetics/155.2.945
Yeh FC, Yang R, Boyle TJ, et al. POPGENE 32, Microsoft Windows-based freeware for population genetic analysis. Edmonton: Molecular biology and biotechnology centre, University of Alberta; 2000.
Hinze LL, Fang DD, Gore MA, et al. Molecular characterization of the Gossypium diversity reference set of the US national cotton germplasm collection. Theor Appl Genet. 2015;128:313–27.
pubmed: 25431191
doi: 10.1007/s00122-014-2431-7
Taberlet P, Luikart G. Non-invasive genetic sampling and individual identification. Biol J Linn Soc. 1999;68(1–2):41–55.
doi: 10.1111/j.1095-8312.1999.tb01157.x
Waits LP, Luikart G, Taberlet P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol. 2001;10(1):249–56.
pubmed: 11251803
doi: 10.1046/j.1365-294X.2001.01185.x
Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583–90.
pubmed: 17248844
pmcid: 1213855
doi: 10.1093/genetics/89.3.583
Mohammadis A, Prasanna BM. Analysis of genetic diversity in crop plants. Crop Sci. 2003;43:1235–48.
doi: 10.2135/cropsci2003.1235
Bhandari HR, Bhanu AN, Srivastava K, et al. Assessment of genetic diversity in crop plants-an overview. Adv Plants Agric Res. 2017;7(3):279–86.
Gogoi B, Wann SB, Saikia SP. Comparative assessment of ISSR, RAPD, and SCoT markers for genetic diversity in Clerodendrum species of North East India. Mol Biol Rep. 2020;47:7365–77.
pubmed: 32880835
doi: 10.1007/s11033-020-05792-x
Nie XH, Li YR, Tian SL, et al. Construction of DNA fingerprint map and analysis of genetic diversity for Chinese chestnut cultivars (lines). Acta Horticulturae Sinica. 2022;49(11):2313–24.
Al-Najm A, Luo S, Ahmad NM, et al. Molecular variability and genetic relationships of date palm (‘Phoenix dactylifera’L.) Cultivars based on inter-primer binding site (iPBS) markers. Aust J Crop Sci. 2016;10(5):732–40.
doi: 10.21475/ajcs.2016.10.05.p7491
Mehmood A, Luo S, Ahmad NM, et al. Molecular variability and phylogenetic relationships of guava (Psidium guajava L.) cultivars using inter-primer binding site (iPBS) and microsatellite (SSR) markers. Genet Resour Crop Evol. 2016;63:1345–61.
doi: 10.1007/s10722-015-0322-7
Mliki A, Staub JE, Zhangyong S, et al. Genetic diversity in African cucumber (Cucumis sativus L.) provides potential for germplasm enhancement. Genet Resour Crop Evol. 2003;50:461–8.
doi: 10.1023/A:1023957813397
Feng SJ. Genetic andphylogenetic structure of Zanthoxylum species. Northwest A&F University; 2017.
Yang W, Bai Z, Wang F, et al. Analysis of the genetic diversity and population structure of Monochasma Savatieri Franch. Ex Maxim using novel EST-SSR markers. BMC Genomics. 2022;23(1):597.
pubmed: 35974306
pmcid: 9382759
doi: 10.1186/s12864-022-08832-x
Wright S. Evolution in mendelian populations. Genetics. 1931;16:97–159.
pubmed: 17246615
pmcid: 1201091
doi: 10.1093/genetics/16.2.97
Slatkin M. Gene flow and the geographic structure of natural populations. Volume 236. New York, N.Y.): Science; 1987. pp. 787–92. 4803.
Chen S, Xu Y, Helfant L, Geographical, Isolation. Buried depth, and Physicochemical Traits Drive the Variation of Species Diversity and Prokaryotic Community in three typical hypersaline environments. Microorganisms. 2020;8(1):120.
pubmed: 31963126
pmcid: 7022874
doi: 10.3390/microorganisms8010120
Booy G, Hendriks RJJ, Smulders MJM, et al. Genetic diversity and the survival of populations. Plant Biol. 2000;2(04):379–95.
doi: 10.1055/s-2000-5958
Chen Y, Dai X, Hou J, et al. DNA fingerprinting of oil camellia cultivars with SSR markers. Tree Genet Genomes. 2016;12:1–8.
doi: 10.1007/s11295-015-0966-7
He B, Geng R, Cheng L, Yang X, Ge H, Ren M. Genetic diversity and fingerprinting of 33 standard flue-cured tobacco varieties for use in distinctness, uniformity, and stability testing. BMC Plant Biol. 2020;20(1):378.
pubmed: 32807096
pmcid: 7433079
doi: 10.1186/s12870-020-02596-w
Tarroux E, DesRochers A, Tremblay F. Molecular analysis of natural root grafting in Jack pine (Pinus banksiana) trees: how does genetic proximity influence anastomosis occurrence? Tree Genet Genomes. 2014;10(3):667–77.
doi: 10.1007/s11295-014-0712-6
Zeng YH, He JZ, Long QY, et al. Genetic diversity analysis and fingerprinting construction of wild Cymbidium goeringii from Leye, Guangxi by iPBS. Southwest China J Agricultural Sci. 2023;36(01):11–9.
Demirel U, Tındaş İ, Yavuz C, et al. Assessing genetic diversity of potato genotypes using inter-PBS retrotransposon marker system. Plant Genetic Resour. 2018;16(2):137–45.
doi: 10.1017/S1479262117000041
Nybom H, Weising K, Rotter B. DNA fingerprinting in botany: past, present, future. Invest Genet. 2014;5(1):1–35.
doi: 10.1186/2041-2223-5-1