Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato.
Abiotic tress
Genome-wide analysis
RNA helicase
Sweetpotato
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
16 Mar 2024
16 Mar 2024
Historique:
received:
03
10
2023
accepted:
14
02
2024
medline:
18
3
2024
pubmed:
17
3
2024
entrez:
17
3
2024
Statut:
epublish
Résumé
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Identifiants
pubmed: 38493089
doi: 10.1186/s12870-024-04824-z
pii: 10.1186/s12870-024-04824-z
doi:
Substances chimiques
Sodium Chloride
451W47IQ8X
RNA Helicases
EC 3.6.4.13
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
193Subventions
Organisme : Postgraduate Research & Practice Innovation Program of Jiangsu Province
ID : KYCX22_2818
Organisme : CARS-10-Sweetpotato
ID : CARS-10-Sweetpotato
Informations de copyright
© 2024. The Author(s).
Références
Plant Mol Biol. 2010 Jul;73(4-5):449-65
pubmed: 20383562
Plant Cell Physiol. 2013 Sep;54(9):1431-40
pubmed: 23803517
Plant Cell Physiol. 2016 Jan;57(1):174-91
pubmed: 26637537
Gene. 2009 Aug 15;443(1-2):91-9
pubmed: 19463922
Front Plant Sci. 2020 May 26;11:687
pubmed: 32528515
J Exp Bot. 2022 Sep 12;73(16):5671-5681
pubmed: 35595538
Plant Cell Physiol. 2008 Oct;49(10):1563-71
pubmed: 18725370
Cell. 2002 Jun 28;109(7):797-800
pubmed: 12110176
Plant Cell. 2013 Jan;25(1):342-56
pubmed: 23371945
Front Plant Sci. 2016 Jan 08;6:1227
pubmed: 26779246
Trends Biochem Sci. 2018 Apr;43(4):237-250
pubmed: 29486979
Plant Commun. 2022 Sep 12;3(5):100332
pubmed: 35643086
Nucleic Acids Res. 1999 Jan 15;27(2):628-36
pubmed: 9862990
Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11507-12
pubmed: 12165572
Plant Physiol Biochem. 2023 Dec;205:108202
pubmed: 37995575
Nucleic Acids Res. 2012 Apr;40(7):e49
pubmed: 22217600
Chemosphere. 2015 Jan;119:1040-1047
pubmed: 25303666
Plant Cell. 2005 Jan;17(1):256-67
pubmed: 15598798
Chembiochem. 2020 Jul 1;21(13):1885-1892
pubmed: 31972066
Plant Mol Biol. 2023 Oct;113(1-3):19-32
pubmed: 37523054
Trends Biochem Sci. 1999 May;24(5):192-8
pubmed: 10322435
J Exp Bot. 2023 Apr 9;74(7):2295-2310
pubmed: 36416783
Gene. 2013 Jan 15;513(1):128-40
pubmed: 23111163
Plant Cell Environ. 2020 Jul;43(7):1722-1739
pubmed: 32329086
Breed Sci. 2017 Jan;67(1):35-40
pubmed: 28465666
Plant Mol Biol. 2009 Mar;69(4):473-88
pubmed: 19083153
Genes (Basel). 2022 Jan 16;13(1):
pubmed: 35052496
PLoS Pathog. 2020 Jul 30;16(7):e1008709
pubmed: 32730331
J Exp Bot. 2023 Sep 13;74(17):5057-5071
pubmed: 37310806
New Phytol. 2022 Mar;233(5):2232-2248
pubmed: 34913494
Plant Physiol Biochem. 2022 Sep 01;186:242-251
pubmed: 35930936
Front Plant Sci. 2017 May 24;8:871
pubmed: 28596782
J Integr Plant Biol. 2023 Nov;65(11):2456-2468
pubmed: 37594235
Commun Biol. 2023 Apr 5;6(1):372
pubmed: 37020138
Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49
pubmed: 25953851
Int J Mol Sci. 2022 Dec 20;24(1):
pubmed: 36613447
Mol Plant. 2020 Aug 3;13(8):1194-1202
pubmed: 32585190
Mol Genet Genomics. 2020 Mar;295(2):373-389
pubmed: 31781862
J Photochem Photobiol B. 2006 Aug 1;84(2):150-60
pubmed: 16624568
Plant Cell Physiol. 2020 Aug 1;61(8):1507-1516
pubmed: 32467981
Breed Sci. 2017 Jan;67(1):3-14
pubmed: 28465663
Front Plant Sci. 2020 Jan 20;10:1706
pubmed: 32038680
FEBS J. 2011 Jul;278(13):2296-306
pubmed: 21535471
Gene. 2023 Nov 30;886:147717
pubmed: 37595852
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2205842119
pubmed: 36095196
BMC Plant Biol. 2016 Apr 12;16:84
pubmed: 27071313
Eur J Biochem. 2004 May;271(10):1849-63
pubmed: 15128295
Mol Cell. 2001 Aug;8(2):251-62
pubmed: 11545728
Nucleic Acids Res. 2003 Jul 1;31(13):3784-8
pubmed: 12824418
Nat Rev Mol Cell Biol. 2004 Mar;5(3):232-41
pubmed: 14991003
Plant Physiol. 2007 Nov;145(3):814-30
pubmed: 17556511
3 Biotech. 2019 Jan;9(1):10
pubmed: 30622848
Trends Biochem Sci. 2024 Mar;49(3):192-194
pubmed: 37923611
Transgenic Res. 2023 Aug;32(4):293-304
pubmed: 37247124
Genome Res. 2009 Sep;19(9):1639-45
pubmed: 19541911
Plant J. 2004 Jun;38(6):875-86
pubmed: 15165181
Genomics. 2019 Sep;111(5):1006-1017
pubmed: 29792923
PLoS One. 2014 May 30;9(5):e98287
pubmed: 24879307
Mol Cell. 2023 Nov 16;83(22):4174-4189.e7
pubmed: 37949067
J Plant Physiol. 2020 May;248:153138
pubmed: 32213379
Biol Chem. 2021 Feb 15;402(5):529-559
pubmed: 33583161
PLoS One. 2016 Apr 26;11(4):e0154040
pubmed: 27116354
Plant Sci. 2020 Oct;299:110607
pubmed: 32900445
Genes Genomics. 2020 Mar;42(3):325-335
pubmed: 31894476
BMC Plant Biol. 2019 Jan 9;19(1):17
pubmed: 30626336
PLoS One. 2013 Nov 12;8(11):e78982
pubmed: 24265739
Hortic Res. 2020 Aug 1;7:131
pubmed: 32821414
Trends Microbiol. 2023 Apr;31(4):393-404
pubmed: 36463019
PLoS One. 2020 Oct 9;15(10):e0240759
pubmed: 33035277
Plant J. 2023 Oct;116(1):144-160
pubmed: 37415266
Plant Physiol Biochem. 2014 Sep;82:309-18
pubmed: 25043599
Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):505-16
pubmed: 21779027
Front Plant Sci. 2021 Dec 09;12:797276
pubmed: 34956297
Int J Mol Sci. 2022 Jan 20;23(3):
pubmed: 35163041
Nat Plants. 2017 Sep;3(9):696-703
pubmed: 28827752
Nature. 2023 Sep;621(7978):423-430
pubmed: 37674078
CNS Neurosci Ther. 2023 Apr;29(4):988-999
pubmed: 36377508
Genome Res. 2001 Dec;11(12):2101-14
pubmed: 11731501
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W557-9
pubmed: 15980534
Front Plant Sci. 2021 Mar 04;12:615114
pubmed: 33746999
PLoS One. 2015 Aug 04;10(8):e0133849
pubmed: 26241658
Crit Rev Biotechnol. 2019 May;39(3):395-407
pubmed: 30714414
Plant Cell. 2022 Oct 27;34(11):4191-4212
pubmed: 35920787
Plant J. 2013 Oct;76(1):115-27
pubmed: 23808500
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Int J Mol Sci. 2014 Mar 17;15(3):4635-56
pubmed: 24642883
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147